
NOTATION 

~, discharge coefficient; Ap, static pressure gradient on the permeable wall~ qc, dyna- 
mic pressure in the channel from which the discharge occurs; qf, dynamic pressure of entrain- 
ing flow; p, density; c, permeability of wall; d, diameter of holes or width of slit; D, diam- 
eter of tube; H, height of channel; Re, Reynolds number. 
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A hydrodynamic analysis was carried out for the propagation of shear vibrations in 
a layer of a nonlinear viscous ~power-law" fluid. 

Theoretical description and development of the methods of calculating and treating the 
cyclic deformation of polymeric materials are associated with great difficulties. They are 
caused not only by the necessity of solving nonlinear differential equations, but also of 
finding the acoustical characteristics of the substance being treated and their connections 
with its rheological properties. The following scheme of cyclic deformation is considered 
to be the most general one. A material is considered to be enclosed between two parallel 
plates, one of which executes harmonic vibrations in its plane (Fig. i). In this case, from 
the vibrating plate there propagate shear waves perpendicular to the direction of motion of 
the plate. If the other plate is fixed, the waves are partly reflected from it, and partly 
damped. In the general case for a thin layer of fluid, the propagation of the waves can be 
described by the equation [i] 

v = C~ exp i (-- kg @ ~t) + C2 exp i (kg -~ ~t). (1) 

In this case it is assumed that the waves excited by the vibrating plate are not distor- 
ted in form. This assumption is correct for the low-frequency range of cyclic deformation 
of highly viscous polymers and can be confirmed by using harmonic analysis of experimentally 
recorded low-frequency vibrations in a channel filled with a ~power-law" material [2]. 

The boundary conditions in the present case have the form 

v=voexpi~t  for g=O,  v = O ~ r  y = h .  (2) 
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Fig. i. Diagram of the 
deformation process. 
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Fig. 2. Variation of velocity profile 
of material for an increase in the fre- 
quency of vibration of the plate (n = 
0.3; ~ =i-i0 s nsec/m2; A=I.10 -~ m; p = 
10 3 kg/m3; h =2"10 -2 m): a) ~ <2~ 4 

sec-1; b) m~2.10 4 sec-1; c) ~ =5"10 5 
sec-i. 

The complex form of writing Eqs. (I) and (2) is convenient for carrying out calculations: 
however, in what follows, only the real part is necessary. 

Using the boundary conditions (2) we obtain Ci and C2, and after transformation we 
obtain the velocity distribution of the material over the height of the channel 

v =  vo [ cos(kg--~t) sink~/sin kh cos(kh--~t)] . (3)  

In the expression obtained, a quantity that is still unknown is the propagation constant 
k (for an inelastic fluid, equal to the wave number), which in the case of a Newtonian fluid 
equals ~ [3]. 

The aim of the present study is to find the values of the quantity k and the velocity 
distribution for a power-law fluid included between plates, the rheological equation of which 
in the case being considered has the form [4] 

T=Vtl Ov 'Zsig n Ov (4) 
8y 8y 

Knowledge of the propagation constant k for a power-law fluid and of the specific param- 
eters of cyclic deformation enables us to estimate the wavelength % of the wave propagating 
in the fluid, the damping of waves, and the velocity profile of the wave over the height of 
the channel, and also enables us to estimate the inertial forces that arise in a fluid under 
cyclic deformation. 

In the present case the process of propagation of shear vibrations in a layer of a non- 
linear viscous, power-law fluid can be described by the equation of motion with the use of 
(4) and (2). Assuming the process to be unidirectional, we can represent the equation of 
motion with substitution of the rheologica! equation in it in the form 

8U = ~LIZ [ ~ -  I~--1 82v (5) 
P ~ -  . cV l - a f  

To find the velocity profile of the wave between the plates we integrate (5) with boun- 
dary conditions (2), and we approximate it by expression (3) with subsequent determination 
of k. For n =i (a Newtonian fluid), Eq. (5) becomes linear, and in this case there exists 
an analytic solution [5]. 

We apply the Galerkin method used in [6] for solving the problem of the propagation of 
transverse vibrations in an unbounded medium, for which from (5) we form the operator 

Ov ] ~v 1 ~-I O~v L ~ (v) ~ o -- -- W~ . . . . .  O, (6)  
" 8t OF I ~ a 

In view of the fact that perturbation (because n # i) occurs over the variable y, and 
not over t, we can assume that the periodicity over t in the perturbed problem is preserved. 
We find the solution of (5), (2) in the form 
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i = I  i ~ l  

i . e . ,  we c o n s t r u c t  a s e q u e n c e  o f  s o l u t i o n s  v s ( y  , t ) .  

As was n o t e d  a b o v e ,  we n e g l e c t  t h e  p r e s e n c e  o f  h a r m o n i c s  a b o v e  t h e  f u n d a m e n t a l  i n  t h e  
w a v e ,  a l t h o u g h  t h e i r  e f f e c t  on t h e  wave  p r o f i l e  f o r  e s s e n t i a l l y  p s e u d o p l a s t i c  m a t e r i a l s  (n = 
0 . 2 - 0 . 4 )  b e c o m e s  more  s i g n i f i c a n t  i n  c o m p a r i s o n  w i t h  a N e w t o n i a n  f l u i d .  

I t  i s  e a s y  t o  o b t a i n  r e q u i r e m e n t s  f o r  t h e  c o e f f i c i e n t s  a i  a n d  ~ i ,  n e c e s s a r y  f o r  s a t i s f y -  
i n g  t h e  b o u n d a r y  c o n d i t i o n s ,  s u c c e s s i v e l y  s u b s t i t u t i n g  (2)  i n t o  ( 7 ) :  

O,o~ 1 

~0--  0 

s 
X ~ih ~ = 0 
/=1  

~ h ~ = 0 
/=1  

(8) 

T h e n ,  following the Galerkin method, we introduce a system of functions of the form 

H; (V, t) = V~ cos ~ot, t ~ [0 , .  2~ ] ,  V ~: [0, hi, 
[ o) d 

G;(y, t) = gz sin cot, / = 0, 1 . . . . .  s, 

and the scalar product 

(9) 

h 2~/co 

(~(y, O, b(v, O)-=.i .t" ~(Y' O-b(v, Odtdv, (io) 
0 0 

where by virtue of the periodicity with respect to t we use a time interval from 0 to 2~/~. 

Thus, we can construct a Galerkin system with basis (9) and relation (8): 

(L ~(v~), Hj) = 0,1 ] = 1, 2 . . . . .  s - -  1. ( 1 1 )  
(L ~ (v.J, Gj) = o ,  

Substituting (7) into (ii) and satisfying the necessary transformations (which have been 
dropped here because of their complexity), we obtain expressions for the scalar products (Ii), 
which in the system with (8) make it possible to determine ~i and Bi(i =l,2,...,s -- i): 

s [Zi-!-/M s ~ 2=/~) 

(L ~ (vs), Hi) = pro g ~%~ ~i i ~ - j +  l n~v~ ~" i ( i - -  l) .f .f yt+f+2 r (t, ~) f{ (t)dtdy, 
i== 1 i = 2  0 0 

(L '~ (Vs), Gj)= --pVor~h]+I[~=~ 
h i i ] h 2~/~ 

j 4 - i + l  j + l  , ~  " 
' i = 2  0 0 

(12) 

where 

f{ (t) = ~zi cos ~ cot -1- 13~ cos o)t sin cot; f~ (t) = ~z i cos cot sin cot + ~ sin 2 od; 

n--I 

r (t, y) = ~ iy ~-1 (~ cos c0t + ~i sin (0t 
i=1  

(13) 

The system (3), (7), (8), (ii), (12) was solved on a BESM-6 computer, as a result of 
which we found dependences of the velocity of the fluid between the plates v, the propagation 
constant k, the wavelength X =2~/k from the properties of the fluid (~, n, p) and the para- 
meters of cyclic deformation (vo, ~). We obtained that kincreases with increasing values of 
~, n, p, ~, and Vo; however, the index of flow of the material proves to have the strongest 
effect on k. 

Calculations were also carried out for specific fluids, such as rubber mixtures based 
on SKN (a code mark for butadiene-acrylonitrile synthetic rubber), and as parameters of 
cyclic deformation we took the frequently encountered values of frequency and amplitude 
A=vo/~ of the vibrational action [2, 7]. 
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It was established that for distance between the plates not exceeding 20 mm (h_<20 mm 
was chosen on the basis of a real scheme of deformation in the space between the vibrating 
wedge and roller of the calendar [7]), and of polymeric materials, such as rubber mixtures 
(having properties of nonlinear viscous fluids), the profile of velocity between the plates 
remains linear in the range of frequencies ~ <2.104 see -I for A < 3. This is explained by the 
value of the wavelength l>>h, propagating in the fluid. Therefore, two important conclusions 
follow. 

i. In the indicated range of cyclic deformation of nonlinear viscous fluids (rubbers, 
rubber mixtures) for development of methods of calculation and treatment of indicated mate- 
rials we can neglect the inertial forces of the material, since, assuming p(gv/~t) =0 in Eq. 
(5) and solving this together with (2), we obtain a linear velocity distribution 

V=VoCOS(Ot 1 - -  h ' 

which with accuracy needed for engineering calculations describes the behavior of the mate- 
rial for vibratory action with respect to the scheme being investigated. 

2. Operating with the linearity of the velocity profile we can find the optimal param- 
eters of the cyclic deformation, for which we attain the highest intensification of the 
processes of treatment of polymeric materials [2], since in this case the tangential stres- 
ses T distributed with respect to the channel height have a constant value for given value 
of time. This can easily be verified, after substituting (14) into (4). 

For higher frequencies ~ >2.104 sec -~ the velocity profile begins to bend, i.e., 1 
becomes comparable with h, and with further increase, the frequency I becomes much less than 
h o In the last ease it is necessary to take account of the damping of the vibrations in a 
layer of fluid and the distortion of their forms. Figure 2 represents the velocity profiles 
of the fluid between plates for various values of frequency of vibrations of one of them. 

NOTATION 

v, velocity of the material in the direction of the x axis; m, angular frequency$ k, 
propagation constant; t, time; h, distance between the plates; p, density of the fluid~ ~, 
degree of consistency~ n, index of the flow~ T, stress tensor components; I, wavelength; ei, 
Bi, unknown coefficients of the series; Vo, peak value of the velocity of the plate; and A, 
amplitude of the motion of the plate. 
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